Targeting CXCR7/ACKR3 as a therapeutic strategy to promote remyelination in the adult central nervous system
نویسندگان
چکیده
Current treatment modalities for the neurodegenerative disease multiple sclerosis (MS) use disease-modifying immunosuppressive compounds but do not promote repair. Although several potential targets that may induce myelin production have been identified, there has yet to be an approved therapy that promotes remyelination in the damaged central nervous system (CNS). Remyelination of damaged axons requires the generation of new oligodendrocytes from oligodendrocyte progenitor cells (OPCs). Although OPCs are detected in MS lesions, repair of myelin is limited, contributing to progressive clinical deterioration. In the CNS, the chemokine CXCL12 promotes remyelination via CXCR4 activation on OPCs, resulting in their differentiation into myelinating oligodendrocytes. Although the CXCL12 scavenging receptor CXCR7/ACKR3 (CXCR7) is also expressed by OPCs, its role in myelin repair in the adult CNS is unknown. We show that during cuprizone-induced demyelination, in vivo CXCR7 antagonism augmented OPC proliferation, leading to increased numbers of mature oligodendrocytes within demyelinated lesions. CXCR7-mediated effects on remyelination required CXCR4 activation, as assessed via both phospho-S339-CXCR4-specific antibodies and administration of CXCR4 antagonists. These findings identify a role for CXCR7 in OPC maturation during remyelination and are the first to use a small molecule to therapeutically enhance myelin repair in the demyelinated adult CNS.
منابع مشابه
ACKR3 expression on diffuse large B cell lymphoma is required for tumor spreading and tissue infiltration
Diffuse large B cell lymphoma (DLBCL) is the most frequent lymphoma accounting for more than the 30% of the cases. Involvement of extranodal sites, such as bone marrow and central nervous system, is associated with poor prognosis. A contribution of the chemokine system in these processes is assumed as it is known as a critical regulator of the metastatic process in cancer. The atypical chemokin...
متن کاملCXCR7 Is Involved in Human Oligodendroglial Precursor Cell Maturation
Differentiation of oligodendroglial precursor cells (OPCs), a crucial prerequisite for central nervous system (CNS) remyelination in diseases such as Multiple Sclerosis (MS), is modulated by a multitude of extrinsic and intrinsic factors. In a previous study we revealed that the chemokine CXCL12 stimulates rodent OPC differentiation via activation of its receptor CXCR7. We could now demonstrate...
متن کاملCXCR7/ACKR3-targeting ligands interfere with X7 HIV-1 and HIV-2 entry and replication in human host cells
Chemokine receptors CCR5 and CXCR4 are considered the main coreceptors for initial HIV infection, replication and transmission, and subsequent AIDS progression. Over the years, other chemokine receptors, belonging to the family of G protein-coupled receptors, have also been identified as candidate coreceptors for HIV entry into human host cells. Amongst them, CXCR7, also known as atypical chemo...
متن کاملA genetic mouse model of adult-onset, pervasive central nervous system demyelination with robust remyelination.
Adult-onset demyelinating disorders of the central nervous system represent the most common neurological abnormalities in young adults. Nevertheless, our understanding of disease pathogenesis and recovery in demyelinating disorders remains incomplete. To facilitate investigation into these processes, we have developed a new mouse model system that allows for the induction of dipththeria toxin A...
متن کاملWhy does the central nervous system not regenerate after injury?
A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...
متن کامل